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General Notes/Tips

● This presentation is in black and white to make it more easily printable.
● http://www.statmethods.net is a great resource
● This talk assumes you're using RStudio as a GUI for R.
● Feed R a copy of your data, not the original
● Always think before you code, especially in loops, and start small
● “How can I find where my code is failing” is the first step in finding out why your 

code failed.
● When you're done with your code, clean everything up and run it again.  If it 

works then, you're set and can repeat your analysis.
● While many computer languages have 0 referencing, R has 1 referencing.  If this 

conflicts with your habits, you're probably at a skill level where you'll be able to 
readily spot those issues.

● Typing ?[function] (e.g. ?mean() ) pulls up the help page – nicer in RStudio

http://www.statmethods.net/


  

A Quick Word About Formatting

● #Comments are indicated by an octothorp
● Code in this talk is indicated in blue (should print in 

gray) and italics
– print("This demonstrates the print command");

● In RStudio's output console, code is blue, output is 
black, and errors are red.

● It may seem silly to put semicolons at the end of 
individual lines, but make it a habit.  Things fail 
catastrophically in loops without semicolons.

● The quotation marks that you type into one program 
may not paste correctly in R: “” vs  ""



  

Object Types Are Important

● Vectors are one-dimensional arrays
– numerals<-c(1,2,3);
– names<-c("one","two","three");

– capitalNames<-c('ONE','TWO','THREE');

● Data frames are a collection of vectors:
– numbers<-data.frame(numerals, names, 

capitalNames);
– names(numbers)<-c('Numerals','LowerCase','UpperC

ase');



  

Basic Control Structures

● Boolean comparisons
● If() statement (and if()/else() statement)
● For() loop
● While() loop
● Switch Case
● Sapply / Lapply (R specific)
● Sequences and repeat



  

Boolean Comparisons

● A statement for a boolean comparison has to 
have a binary state (TRUE or FALSE)

● == (check if equal)
● <, >, <=, >= (less than, greater than, less than 

OR equal to, greater than OR equal to)
● |, &, ! (or, and, not)
●  isTRUE(1!=1); (checks if contents are true)



  

Boolean Comparator Examples

● 1==1; #True
● 1==0; #False
● 1!=0; #True
● 'a'=='a'; #True
● 1<0; #False
● 1>0; #True
● 1<=1; #True
● 1>=1; #True

● (TRUE & TRUE);
● (TRUE & FALSE);
● (TRUE | FALSE);
● (TRUE | TRUE);
● (FALSE | FALSE);
● (!FALSE);
● (!TRUE);



  

The Humble If() Statement

● “Do this thing in braces if whatever I have in 
parentheses is true”

● x<-10;
● if(x==10){
●   print("x is indeed ten");
● }
● If you change the test condition OR the value you're 

testing so that it evaluates to false, it won't spit out the 
output from the true condition.

● The if() statement is usually paired with an else().



  

At long last else

● “if the condition for the if part isn't satisfied, do this thing 
instead”

● a<-5;
● if(a==5){
●   print("Yep. It's a five.")
● }else{
●   print("Your contrived demonstration did not satisfy the 

if() condition");
● }



  

Well that's pretty boring...

● ...yeah, but it illustrates the mechanics.  Let's 
make a function and cover a new arithmetic 
operator, because that sounds way less boring 
(by comparison)!

● %% (modulo / modulus) does integer division 
and returns the remainder – 10%%3 should 
return 1, for example

● The code's a bit bulky so it's on the next slide



  

That next slide I mentioned

● EvenOrOdd<-function(inputValue){
●   if(inputValue%%2 == 0){
●     print(paste(inputValue,"is even.",sep=" "));
●   }else{
●     print(paste(inputValue,"is odd.", sep=" "));
●   }
● }
● EvenOrOdd(5);
● EvenOrOdd(6);



  

Other Nifty Tricks With If/Else
● p<-0;
● p<-ifelse(p=="not_potato","potato","not_potato");
● z<-0;
● if(z==0){
●   print("Z's zero, so do this thing.");
● }else if(z > 0){
●   print("Z's bigger than zero, so do this thing.");
● }else if(z < 0){
●   print("Z's smaller than zero, so do this thing.");
● }else{
●   print("Wait, if it's not zero, and not larger or smaller...");
●   print("WHY DID WE EVEN WRITE THIS PART?");
● }
● It's generally good coding practice to ALWAYS have an ELSE, even if it's just empty or returns an 

error.



  

WARNING: LOOPS AHEAD

● Loops make it very easy to do repetitive things a 
tremendous number of times.  DO NOT FORGET 
THAT THEY ARE POWERFUL.

● You can crash R or crash your computer with an 
infinite loop or a finite loop that uses too much 
memory.

● Be absolutely certain you know what you're doing if 
you do file I/O in a loop – you could destroy important 
stuff outside of R.  Seriously.

● Consider yourself warned.



  

They're actually not that scary

● In most circumstances, you just need to make 
sure your code runs properly before you put it 
into a loop.  Test the loop with a small amount 
of data before you let it run on a large amount 
of data.

● Efficiency increases inside loops are 
multiplicative, so be mindful of bloated code.

● Be prepared for frustrating errors that will make 
you feel great to fix.



  

The For() Loop

● This is the easiest loop to visualize, the 
hardest loop to break things with, and will 
cover like 99% of your loop needs.

● For loops require a counter variable and a 
sequence in R.  The next few slides will have 
several trivial examples before we get into 
real, useful examples.



  

For() Loop Baby Steps

● print(1);
● print(2);
● print(3);
● print(4);
● print(5);
● For something simple like 

this, a for loop doesn't save 
us much time, but for 
something larger, it saves 
so much time.

● for(i in seq(1:5)){
●     print(i);
● }
● for(i in seq(1:100)){
●     print(i);
● }
● for(i in seq(from=0, to=1000, 

by=100)){
●   print(i);
● }



  

Pffft...that still doesn't seem helpful.

● Oh yeah?
● subNum<-seq(1:1000);
● subNum[473]<-4730;
● for(i in 1:length(subNum)){
●   if(subNum[i]>1000 | subNum[i]<0){
●     subNum[i]=NA;
●     print(paste(i,"had an error!",sep=" "));
●   }
● }
● Boom!  You just changed a value that's impossible to NA so it's flagged 

properly for your analysis AND had R spit out a message to let you know 
what value(s) had a problem.



  

Well, I guess that could be helpful...

●Make this big fake dataset:
● set<-data.frame();
● currentRow = 1;
● for(i in 1:10){
●    for(j in 1:10){
●     for(k in 1:10){
●       set[currentRow,1]<-currentRow;
●       set[currentRow,2]<-i;
●       set[currentRow,3]<-j;
●       set[currentRow,4]<-k;
●       set[currentRow,5]<-rnorm(1,mean=100,sd=15);
●       set[currentRow,6]<-rnorm(1,mean=100,sd=15);
●       set[currentRow,7]<-rnorm(1,mean=100,sd=15);
●       set[currentRow,8]<-rnorm(1,mean=100,sd=15);
●       set[currentRow,9]<-rnorm(1,mean=100,sd=15);
●       currentRow=currentRow+1;
●     }
●   }
● }
● names(set)<-c("SubjectNo","Cond1","Cond2","Cond3","IQ1","IQ2","IQ3","IQ4","IQ5");



  

...why are we doing this?

● for(i in 1:nrow(set)){
●   set[i,10]<-sum(set[i,5:9])/5;
●   if(set[i,10]>105){
●     set[i,11]="HIGH";
●   }else if(set[i,10]<95){
●     set[i,11]="LOW";
●   }else{
●     set[i,11]="AVG";
●   }
● }
● names(set)[10:11]<-c("Mean","Group");
● We can aggregate, encode, replace, and do a lot of other things in for loops that would 

otherwise be prone to error and highly time consuming.



  

Switch Case

● Works like if/else but does not perform 
boolean assessments

● Improved efficiency under some 
circumstances (not as good as switch case in 
other languages)

● demoVariable<-'q';
● switch(demoVariable, a="Got a", b="Got b", 

c="Got c", "Got something else.");



  

Sapply / Lapply

● Applies function over specified object or range
● Generally prefer sapply() (neater output)
● someNumbers<-data.frame(rnorm(1000,0,1),rno

rm(1000,6,2),rnorm(1000,12,3.6));
● names(someNumbers)<-c("Group1", "Group2", 

"Group3");
● sapply(someNumbers, summary);
● lapply(someNumbers, summary);



  

Sequences and Repeat

● seq(from, to, by); rep(thingToRepeat, times);
● seq(from=0, to=1000, by=20);
● rep(1,50);
● rep(seq(1,5),20);
● Handy for encoding, generating simulation 

data, etc.



  

How do I get my info out?

● (Requires code from slide 21)
● attach(someNumbers);
● output<-t.test(Group1, Group2);
● names(output);
● tVal<-output[[1]];
● tValue<-as.numeric(output[1]);
● The last line grabs just the numeric value, which is handy
● This is essential for making custom functions, running 

identical tests on massive data collections, etc.



  

Saving yourself a lot of copy/paste

● source(file=file.choose(new = FALSE));
● corOut<-all.correlations(someNumbers);
● Use the first line to add the function in 

AllCorrelations.R to your script
● Second line runs it and stores the output
● Note that this script does not correct for 

multiple comparisons



  

Handy Bonus Trick

● Need to allow the user to interactively select 
the working directory?

● library(tcltk);
● setwd(tk_choose.dir(default = "", caption = 

"Select directory"));
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