

Talk 2 - Control Structures in R

Kevin O'Brien, M.S.
Vision Sciences Laboratory

Fall 2013
University of Georgia

Psychology Department

General Notes/Tips

● This presentation is in black and white to make it more easily printable.
● http://www.statmethods.net is a great resource
● This talk assumes you're using RStudio as a GUI for R.
● Feed R a copy of your data, not the original
● Always think before you code, especially in loops, and start small
● “How can I find where my code is failing” is the first step in finding out why your

code failed.
● When you're done with your code, clean everything up and run it again. If it

works then, you're set and can repeat your analysis.
● While many computer languages have 0 referencing, R has 1 referencing. If this

conflicts with your habits, you're probably at a skill level where you'll be able to
readily spot those issues.

● Typing ?[function] (e.g. ?mean()) pulls up the help page – nicer in RStudio

http://www.statmethods.net/

A Quick Word About Formatting

● #Comments are indicated by an octothorp
● Code in this talk is indicated in blue (should print in

gray) and italics
– print("This demonstrates the print command");

● In RStudio's output console, code is blue, output is
black, and errors are red.

● It may seem silly to put semicolons at the end of
individual lines, but make it a habit. Things fail
catastrophically in loops without semicolons.

● The quotation marks that you type into one program
may not paste correctly in R: “” vs ""

Object Types Are Important

● Vectors are one-dimensional arrays
– numerals<-c(1,2,3);
– names<-c("one","two","three");

– capitalNames<-c('ONE','TWO','THREE');

● Data frames are a collection of vectors:
– numbers<-data.frame(numerals, names,

capitalNames);
– names(numbers)<-c('Numerals','LowerCase','UpperC

ase');

Basic Control Structures

● Boolean comparisons
● If() statement (and if()/else() statement)
● For() loop
● While() loop
● Switch Case
● Sapply / Lapply (R specific)
● Sequences and repeat

Boolean Comparisons

● A statement for a boolean comparison has to
have a binary state (TRUE or FALSE)

● == (check if equal)
● <, >, <=, >= (less than, greater than, less than

OR equal to, greater than OR equal to)
● |, &, ! (or, and, not)
● isTRUE(1!=1); (checks if contents are true)

Boolean Comparator Examples

● 1==1; #True
● 1==0; #False
● 1!=0; #True
● 'a'=='a'; #True
● 1<0; #False
● 1>0; #True
● 1<=1; #True
● 1>=1; #True

● (TRUE & TRUE);
● (TRUE & FALSE);
● (TRUE | FALSE);
● (TRUE | TRUE);
● (FALSE | FALSE);
● (!FALSE);
● (!TRUE);

The Humble If() Statement

● “Do this thing in braces if whatever I have in
parentheses is true”

● x<-10;
● if(x==10){
● print("x is indeed ten");
● }
● If you change the test condition OR the value you're

testing so that it evaluates to false, it won't spit out the
output from the true condition.

● The if() statement is usually paired with an else().

At long last else

● “if the condition for the if part isn't satisfied, do this thing
instead”

● a<-5;
● if(a==5){
● print("Yep. It's a five.")
● }else{
● print("Your contrived demonstration did not satisfy the

if() condition");
● }

Well that's pretty boring...

● ...yeah, but it illustrates the mechanics. Let's
make a function and cover a new arithmetic
operator, because that sounds way less boring
(by comparison)!

● %% (modulo / modulus) does integer division
and returns the remainder – 10%%3 should
return 1, for example

● The code's a bit bulky so it's on the next slide

That next slide I mentioned

● EvenOrOdd<-function(inputValue){
● if(inputValue%%2 == 0){
● print(paste(inputValue,"is even.",sep=" "));
● }else{
● print(paste(inputValue,"is odd.", sep=" "));
● }
● }
● EvenOrOdd(5);
● EvenOrOdd(6);

Other Nifty Tricks With If/Else
● p<-0;
● p<-ifelse(p=="not_potato","potato","not_potato");
● z<-0;
● if(z==0){
● print("Z's zero, so do this thing.");
● }else if(z > 0){
● print("Z's bigger than zero, so do this thing.");
● }else if(z < 0){
● print("Z's smaller than zero, so do this thing.");
● }else{
● print("Wait, if it's not zero, and not larger or smaller...");
● print("WHY DID WE EVEN WRITE THIS PART?");
● }
● It's generally good coding practice to ALWAYS have an ELSE, even if it's just empty or returns an

error.

WARNING: LOOPS AHEAD

● Loops make it very easy to do repetitive things a
tremendous number of times. DO NOT FORGET
THAT THEY ARE POWERFUL.

● You can crash R or crash your computer with an
infinite loop or a finite loop that uses too much
memory.

● Be absolutely certain you know what you're doing if
you do file I/O in a loop – you could destroy important
stuff outside of R. Seriously.

● Consider yourself warned.

They're actually not that scary

● In most circumstances, you just need to make
sure your code runs properly before you put it
into a loop. Test the loop with a small amount
of data before you let it run on a large amount
of data.

● Efficiency increases inside loops are
multiplicative, so be mindful of bloated code.

● Be prepared for frustrating errors that will make
you feel great to fix.

The For() Loop

● This is the easiest loop to visualize, the
hardest loop to break things with, and will
cover like 99% of your loop needs.

● For loops require a counter variable and a
sequence in R. The next few slides will have
several trivial examples before we get into
real, useful examples.

For() Loop Baby Steps

● print(1);
● print(2);
● print(3);
● print(4);
● print(5);
● For something simple like

this, a for loop doesn't save
us much time, but for
something larger, it saves
so much time.

● for(i in seq(1:5)){
● print(i);
● }
● for(i in seq(1:100)){
● print(i);
● }
● for(i in seq(from=0, to=1000,

by=100)){
● print(i);
● }

Pffft...that still doesn't seem helpful.

● Oh yeah?
● subNum<-seq(1:1000);
● subNum[473]<-4730;
● for(i in 1:length(subNum)){
● if(subNum[i]>1000 | subNum[i]<0){
● subNum[i]=NA;
● print(paste(i,"had an error!",sep=" "));
● }
● }
● Boom! You just changed a value that's impossible to NA so it's flagged

properly for your analysis AND had R spit out a message to let you know
what value(s) had a problem.

Well, I guess that could be helpful...

●Make this big fake dataset:
● set<-data.frame();
● currentRow = 1;
● for(i in 1:10){
● for(j in 1:10){
● for(k in 1:10){
● set[currentRow,1]<-currentRow;
● set[currentRow,2]<-i;
● set[currentRow,3]<-j;
● set[currentRow,4]<-k;
● set[currentRow,5]<-rnorm(1,mean=100,sd=15);
● set[currentRow,6]<-rnorm(1,mean=100,sd=15);
● set[currentRow,7]<-rnorm(1,mean=100,sd=15);
● set[currentRow,8]<-rnorm(1,mean=100,sd=15);
● set[currentRow,9]<-rnorm(1,mean=100,sd=15);
● currentRow=currentRow+1;
● }
● }
● }
● names(set)<-c("SubjectNo","Cond1","Cond2","Cond3","IQ1","IQ2","IQ3","IQ4","IQ5");

...why are we doing this?

● for(i in 1:nrow(set)){
● set[i,10]<-sum(set[i,5:9])/5;
● if(set[i,10]>105){
● set[i,11]="HIGH";
● }else if(set[i,10]<95){
● set[i,11]="LOW";
● }else{
● set[i,11]="AVG";
● }
● }
● names(set)[10:11]<-c("Mean","Group");
● We can aggregate, encode, replace, and do a lot of other things in for loops that would

otherwise be prone to error and highly time consuming.

Switch Case

● Works like if/else but does not perform
boolean assessments

● Improved efficiency under some
circumstances (not as good as switch case in
other languages)

● demoVariable<-'q';
● switch(demoVariable, a="Got a", b="Got b",

c="Got c", "Got something else.");

Sapply / Lapply

● Applies function over specified object or range
● Generally prefer sapply() (neater output)
● someNumbers<-data.frame(rnorm(1000,0,1),rno

rm(1000,6,2),rnorm(1000,12,3.6));
● names(someNumbers)<-c("Group1", "Group2",

"Group3");
● sapply(someNumbers, summary);
● lapply(someNumbers, summary);

Sequences and Repeat

● seq(from, to, by); rep(thingToRepeat, times);
● seq(from=0, to=1000, by=20);
● rep(1,50);
● rep(seq(1,5),20);
● Handy for encoding, generating simulation

data, etc.

How do I get my info out?

● (Requires code from slide 21)
● attach(someNumbers);
● output<-t.test(Group1, Group2);
● names(output);
● tVal<-output[[1]];
● tValue<-as.numeric(output[1]);
● The last line grabs just the numeric value, which is handy
● This is essential for making custom functions, running

identical tests on massive data collections, etc.

Saving yourself a lot of copy/paste

● source(file=file.choose(new = FALSE));
● corOut<-all.correlations(someNumbers);
● Use the first line to add the function in

AllCorrelations.R to your script
● Second line runs it and stores the output
● Note that this script does not correct for

multiple comparisons

Handy Bonus Trick

● Need to allow the user to interactively select
the working directory?

● library(tcltk);
● setwd(tk_choose.dir(default = "", caption =

"Select directory"));

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

