[bookmark: _GoBack]Organizational Research
Methods
http://orm.sagepub.com/






Method Effects, Measurement Error, and Substantive Conclusions
Charles E. Lance, Bryan Dawson, David Birkelbach and Brian J. Hoffman
Organizational Research Methods 2010 13: 435 originally published online 28 January 2010
DOI: 10.1177/1094428109352528

The online version of this article can be found at:
http://orm.sagepub.com/content/13/3/435


Published by:[image: ]




http://www.sagepublications.com

On behalf of:[image: ]








The Research Methods Division of The Academy of Management



Additional services and information for Organizational Research Methods can be found at:

Email Alerts: http://orm.sagepub.com/cgi/alerts

Subscriptions: http://orm.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations: http://orm.sagepub.com/content/13/3/435.refs.html



>> Version of Record - Jun 21, 2010

OnlineFirst Version of Record - Jan 28, 2010

What is This?



Downloaded from orm.sagepub.com at UNIV OF GEORGIA LIBRARIES on October 9, 2013





Method Effects,  Measurement Error, and  Substantive Conclusions



Charles E. Lance,1 Bryan  Dawson,1
David  Birkelbach,1 and  Brian  J. Hoffman1

Organizational Research Methods
13(3) 435-455
ª The Author(s) 2010
Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/1094428109352528 http://orm.sagepub.com[image: ]






Abstract
Common method variance is routinely viewed as a pervasive problem in organizational research, one that undermines good science and biases empirical conclusions. The authors review research that  has used multitrait   multimethod (MTMM) designs to  estimate the  magnitude of common method variance in organizational research. The results of this study show that method variance accounts for less variance (18%) than has been suggested by previous reviews. The authors also consider simultaneously the attenuating effect of measurement  error  with the inflationary  effect of common method  variance on observed relationships. Results indicate that although common method variance does have an inflationary effect on observed relationships, this effect is almost completely offset by the attenuating effect of measurement error.
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‘‘ .. . [M]easurement, in the broadest sense, is defined as the assignment of numerals to objects or events according to rules’’ (Stevens, 1946, p. 677), and it has long been recognized that the act of measuring some phenomenon can affect the phenomenon under study itself (Heisenberg, 1927; Messiah, 1961  1962), ‘‘by changing the underlying construct of interest or by distorting the mea- surement process’’ (Spector, 2006, p. 222). Depending on the particular approach, apparatus, proce- dure, or method that is used to assign numbers to objects or events, the effect that the act of measurement has upon the objects or events being measured may differ, and it is in this sense that
‘‘measurement method effect’’ is defined.
Measurement method (or more simply ‘‘method’’) effects are widely believed to pose threats to research in the organizational and behavioral sciences, especially when multiple study variables are measured using the same method. For example, according to Spector (2006) ‘‘[i]t is widely believed that relationships between variables measured with the same method will be inflated due to the
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action of common method variance’’ (p. 221). In addition, Podsakoff, MacKenzie, Lee, and Podsak- off (2003) argued that ‘‘[m]ost researchers agree that common method variance .. . is a potential problem in behavioral research’’ (p. 879). As a third example and as part of his outgoing comments as editor of the Journal of Applied Psychology, J. P. Campbell (1982) wrote:

With perhaps one or two exceptions there has been very little opportunity to exercise any professional biases (I think). One possible exception pertains to the use of a self-report questionnaire to measure all the variables in a study. If there is no evident construct validity for the questionnaire measure or no vari- ables that are measured independently of the questionnaire, I am biased against the study and believe that it contributes very little. Many people share this bias. (p. 692).

Thus, there appears to be a common belief, one might even say an ‘‘urban legend’’ (Lance & Vandenberg, 2009; Vandenberg, 2006) that correlations among variables that are measured using the same measurement method are distorted (typically inflated) as compared to correlations among the constructs themselves. Surprisingly, to our knowledge the idea that observed monomethod cor- relations are inflated as compared to correlations among the traits themselves has been tested only once previously (Lance & Sloan, 1993). The first purpose of this study was to provide a broader test of this idea using multiple published data sets.
The second purpose of this study was to estimate the pervasiveness and magnitude of method and common method effects in organizational research measures. This has been done before (Buckley, Cote, & Comstock, 1990; Cote & Buckley, 1987; Crampton & Wagner, 1994; Doty & Glick, 1998; Spector, 1987; Williams, Cote, & Buckley, 1989). However, we will argue that most of these pre- vious efforts suffered from one of two limitations that we intend to overcome. First, one approach to estimating common methods effects has been to compare the magnitudes of monomethod correla- tions (correlations between variables using the same method) with those of heteromethod correla- tions (correlations between variables using different methods). The general rationale of this approach is that the difference between monomethod and heteromethod correlations calibrates the extent of covariance distortion due to method effects. We will show later that this is generally incor- rect. We also argue below that recent research, which has shown that some measurement facets that once were considered mere measurement methods should actually be more properly regarded as comprising aspects of domain-specific substantive nomological networks (Cronbach & Meehl,
1955), and not merely alternative procedures for assigning numbers to objects or events (Stevens,
1946). In discussing these measurement facets, we will argue their importance and the need to study them in their own right, but that they should be excluded from consideration as mere measurement methods. Therefore, we aim to provide what we feel are more accurate estimates of measurement method and common method effects per se than have previous attempts to do so. We now turn to more detailed discussions of these two goals.



Are  Monomethod Correlations Distorted (Usually Inflated) Compared to Correlations Among Corresponding Constructs?
Figure 1 illustrates two possible threats posed by method effects. The first possible threat is compro- mised construct validity due to contamination of observed measures by method effects:

Xijk ¼ lTij Ti þ lMij Mj þ Eijk                                                                         ð1Þ

where Xijk  is the kth realization of the ith person’s characteristic or trait (Ti) that is being measured by the jth method (Mj), and Eijk  represents nonsystematic measurement error. For convenience, we
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Figure 1. Possible threats posed by method effects.



assume that E(Ti) ¼ E(Mj) ¼ E(Eik) ¼ 0 and that Xijk, Ti, and Mj have unit variances so that the ls effectively represent standardized regression coefficients (or factor loadings, see below). We also assume that E(Ti,Mj) ¼ E(Ti,Eijk) ¼ E(Mj,Eijk) ¼ E(Eijk,Eijk’) ¼ 0. Under these assumptions:

s2               2           2             2Eijk

Xijk  ¼ lTi   þ lMj   þ sEijk :                                                      ð2Þ


That is, variance in observed scores (s2Xijk
Ti


) is a composite of true score variance (l2  ), method var-

iance (l2Mj


), and nonsystematic error variance (s2

). Thus, the construct validity of X is compro-

mised to the extent that it reflects the influence of the measurement method relative to that of the focal trait, and it has been estimated that somewhere from 22% (Buckley et al., 1990) to 32% (Doty
& Glick, 1998) to 72% (Mount, Judge, Scullen, Sytsma, & Hezlett, 1998) of the variance in mea- sures used in organizational research is attributable to method variance (see also Cote & Buckley,
1987; Williams et al., 1989). However, the presence of method variance does not, by itself, neces- sarily pose a threat to research findings if, for example, method variance is not shared across mea- sures of different constructs.
A second possible threat of method effects is that of covariance distortion. As is illustrated in Figure 2, if two different traits (Ti and Ti0 ) are measured using the same measurement method, the observed score correlation reflects not just the correlation among the traits (FTi Ti0 ) but also the com- mon causal effect of the measurement method (lMij lMi0 j ). It is this latter effect that often leads to the attribution that measurement of different variables by the same measurement method leads to
inflated estimates of true score correlations, whereas the use of different methods avoids this covar- iance  distortion and, in fact,  if both lMij     and lMi0 j are  similarly signed and nonnegligible,  an
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Figure 2. CTCM CFA parameterization of MTMM data. CTCM ¼ correlated trait-correlated  method; CFA ¼
confirmatory factor analysis.

inflationary effect will incur for the observed correlation rXij Xi0 j . However, this is not the whole story. rXij Xi0 j  is also attenuated by the effects lTi   and lTi0 , which are tantamount to the reliability indexes (or the square roots of the variables’ respective reliabilities in the absence of method effects; Crocker & Algina, 1986) for Xij  and Xi’j:

rXij Xi0 j   ¼ lTij lTi0 j fTi Ti0   þ lMij lMi0 j                                                                                                 ð3Þ

Thus,  monomethod  correlations  (or  heterotrait   monomethod  [HTMM]  correlations  in  multi- trait   multimethod [MTMM] nomeclature, D. T. Campbell & Fiske, 1959) are simultaneously atte- nuated due to unreliability (to the extent that the lTi s are < 1.0), and distorted (usually inflated) due to common method effects (lMij lMi0 j ).
In one study that assessed these effects, Lance and Sloan (1993) conducted a confirmatory factor
analysis (CFA) of MTMM data consisting of a number of life facet satisfaction constructs (e.g., satisfaction with work, family, income, etc.) as measured by three different response scale formats. Using a correlated trait   correlated method (CTCM) parameterization (Lance, Noble, & Scullen,
2002), Lance and Sloan found that the mean observed monomethod correlation (.30) was nearly identical to that of the mean satisfaction latent variable correlation (.29), indicating that the inflation- ary effect of common method variance almost exactly offset the attenuating effects of measurement error. These findings suggest that the widespread belief that monomethod correlations are inflated is supported by a kernel of truth (Vandenberg, 2006; i.e., there was an inflationary effect of common method effects) but is also part urban legend because the attenuating effect of unreliability offset this inflationary effect so that observed correlations were actually not higher than estimated correlations among the traits themselves. The first purpose of this study was to extend this research to the broader literature that has used MTMM matrices.




What are the Magnitudes of Method and  Common Method Effects?

As we mentioned earlier, there have been several previous attempts to answer this question, and the answer seems to depend on which source one consults and how these effects are estimated. Some (e.g., Buckley et al., 1990; Cote & Buckley, 1987; Doty & Glick, 1998; Williams et al., 1989) have claimed that method effects are widespread, robust, and pose the threats discussed earlier to orga- nizational and social science research whereas others (e.g., Crampton & Wagner, 1994; Spector,
1987, 2006) have claimed that the potential threats posed by method effects are minimal. We hope
to clarify this controversy in two ways and provide more accurate estimates of the prevalence of method effects.


Do Not Compare Monomethod and Heteromethod  Correlations to Assess Method Effects
One approach to gauging the presence of method effects has been to compare the magnitudes of monomethod correlations with those of heteromethod correlations under the rationale that mono- method correlations should be inflated by common method bias whereas the heteromethod correla- tions should not. However, this is generally not true. We show why in reference to Figure 2 (of which Figure 1 is a subset), which shows a general (but simplified) representation of relationships between multiple traits as measured by multiple methods in a MTMM matrix (D. T. Campbell & Fiske,
1959). As we showed earlier, a HTMM correlation can be decomposed from Figure 1 or the more general Figure 2 as

rTi Mj ;Ti0 Mj  ¼ lTij lTi0 j fTi Ti0   þ lMij lMi0 j :                                            ð4Þ

A HTMM correlation reflects the influence of possibly correlated traits (attenuated by measurement error) plus the (usually) inflationary effects of common method effects. However, covariance distortion  effects  are  not  limited  to  monomethod  correlations.  As  is  shown  in  Figure  2, monotrait   heteromethod (MTHM) and heterotrait   heteromethod (HTHM) correlations are also potentially subject to covariance distortion, because they reflect the influences of potentially correlated methods:

MTHM ¼ rTi Mj ;Ti Mj0   ¼ lTij lTij0   þ lMij lMij0 fMj Mj0                                                                         ð5Þ

HTHM ¼ rTi Mj ;Ti0 Mj0   ¼ lTij lTi0 j0 fTi Ti0   þ lMij lMi0 j0 fMj Mj0                                                               ð6Þ

Thus, contrary to conventional wisdom, the so-called ‘‘convergent validities’’ (D. T. Campbell & Fiske, 1959; Woehr & Arthur, 2003, p. 242) reflect the influence not only of the common trait (lTij lTij0 ) but also potentially of correlated methods (lMij lMij0 fMj Mj0 ). Even the HTHM correlations,
which logically have nothing in common (these correlations reflect correlations between different
traits as measured by different methods), still potentially reflect the influences of both correlated traits (lTij lTi0 j0 fTi Ti0 ) and correlated methods (lMij lMi0 j0 fMj Mj0 ). Thus, to the extent that methods’ effects on observed measures are non-negligible and homogeneously signed (e.g., all positive) and method factors correlate positively, covariance inflation will incur even for heteromethod correla- tions, including the so-called convergent validities (MTHM correlations). In fact, the so-called
‘‘convergent validities’’ (Woehr & Arthur, 2003, p. 242) can be reasonably high even when there is no convergent validity (effects of the common trait are 0, i.e., lTi   ¼ lTi0   ¼ 0) if the effects of rea- sonably highly correlated methods are reasonably strong (i.e., the MTHM correlation is exclusively a function of the product lMij lMij0 fMj Mj0 ). Of course, if the methods are uncorrelated, no covariance distortion will incur, even in the presence of substantial method variance, and if the methods are negatively correlated, additional attenuation beyond that due to the measures’ unreliability will




incur. This analysis points to the single case in which comparisons between monomethod and het- eromethod correlations provide an appropriate indication of covariance distortion: methods must be uncorrelated. Are they? Not according to Doty and Glick (1998) who found that the mean estimated methods correlation ðfMj Mj0 Þ in the studies reviewed was .34, or Buckley et al. (1990) whose mean estimated fMj Mj0   was .37, or Cote and Buckley (1987) whose mean estimated fMj Mj0   was .48 or Wil- liams et al. (1989) whose mean estimated fMj Mj0   was .63. Different raters or rater sources are some- times treated as different methods (however, see below) and Hoffman, Lance, Bynum, and Gentry (in press) recently estimated the correlation between boss and peer rating source latent variables to be .86. Thus, the assumption that methods are uncorrelated is not generally supported and neither is the practice of comparing monomethod to heteromethod correlations to assess method effects. Results from studies that have found small differences between monomethod and heteromethod cor- relations are ambiguous because these results could indicate that either (a) method effects are small in both Equations 4 (lMij lMi0 j ) and 6 (lMij lMij0 fMj Mj0 ), or (b) method effects were present in both cases and method correlations (fMj Mj0 ) were non-negligible, in the absence of direct estimates for the lMs and fMj Mj0 s. As such, comparisons between monomethod and heteromethod correlations are ambiguous at best and are potentially quite misleading.



Not all Alleged Methods  Should Really be Considered Mere Measurement Methods

D.T. Campbell and Fiske’s (1959) design has been applied to a wide variety of trait domains and a number of different alleged measurement methods, including different raters (or rater sources), tests, response formats, exercises in assessment centers (ACS), measurement occasions, apparatuses, and so on (Lance, Baranik, Lau, & Scharlau, 2009). Appropriately, Spector (2006) questioned ‘‘What is a method?’’ (p. 227). That is, what is it that qualifies each of these measurement facets as a measure- ment method facet as compared to the trait measurement facet? In their recent review of MTMM literature, Lance et al. (2009) suggested that researchers sometimes have been rather cavalier in their treatment of method facets under a default assumption that ‘‘if it ain’t trait it must be method’’ (p.
339), meaning that if one has a three-facet measurement design where one facet represents the objects of measurement (e.g., research participants), a second facet that represents the focal con- structs (i.e., the traits of interest, such as personality or job performance dimensions), then the third facet (e.g., raters, AC exercises, response formats) that is not the trait facet must therefore be a mea- surement method facet. One danger in this default assumption is that method effects and common method variance are usually assumed to reflect sources of unwanted contamination and bias that should be minimized (Avolio, Yammarino, & Bass, 1991). One (typical) example of this attribution is the claim by Bagozzi and Yi (1990) that ‘‘method variance can bias results when researchers investigate relations among constructs with the common method ...  method variance produces a potential threat to the validity of empirical findings’’ (p. 547). As another example, Ostroff, Kinicki, and Clark (2002) referred to the ‘‘ ...  insidious effects of method variance and method bias’’ (p.
366). However, some measurement facets that were once thought of as mere measurement method facets that contributed unwanted contaminating bias in the measurement process are now better understood as representing substantive theoretical constructs in their own right that affect organiza- tional outcomes (see Lance et al., 2009 for a review).
As one example, researchers in the area of multisource performance rating (where performance dimensions were treated as traits and raters or rater sources as methods) long considered individual rater and rater source effects as representing artifactual and contaminating rater biases such as halo error (e.g., Conway & Huffcutt, 1997; King, Hunter, & Schmidt, 1980; Viswesvaran, Ones, & Schmidt, 1996;  Wherry &  Bartlett,  1982). However, more  recent  research has  demonstrated




empirically that these rater and source effects are more appropriately interpreted as sources of per- formance true-score-related variance (Hoffman & Woehr, 2009; Lance, Baxter, & Mahan, 2006; Lance, Hoffman, Gentry & Baranik, 2008; Lance, Teachout & Donnelly, 1992). As Borman (1974) suggested over 35 years ago, rater and source effects represent different aspects of the criter- ion construct space that are captured uniquely by the different sources. The fact that rater/source effects dominate over dimension effects on multisource ratings (see Hoffman et al., in press; Lance et al., 2008; Mount et al., 1998; Scullen, Mount, & Goff, 2000) led researchers for years to believe that multisource ratings were biased and had low interrater reliability (e.g., Viswesvaran et al.,
1996), when, in fact, raters were doing just what practitioners had envisioned in the first place–– representing their  different,  yet  somewhat complementary  perspectives on  ratee  performance (e.g., London & Tornow, 1998). Thus, different raters and rater sources should not be considered mere measurement methods.
A second example comes from MTMM-related AC construct validity research where AC dimen- sions were historically treated as traits and AC exercises as methods (e.g., Arthur, Woehr, & Maldegan, 2000; Lievens & Conway, 2001; Woehr & Arthur, 2003). Early on in research on the construct validity of ACs, Sackett and Dreher (1982) found that exercise (qua method) effects dom- inated over dimension (qua trait) effects in factor analyses of AC ratings, referring to these as a set of
‘‘troubling findings’’ (p. 401). Now, after more than 25 years of attempts to ‘‘fix’’ ACs so that they do not exhibit these allegedly unwanted exercise (qua ‘‘method’’) effects, AC exercise effects still dominate over dimension effects (see Lance, 2008a; Lance, Lambert, Gewin, Lievens, & Conway,
2004). Now, however, these exercise effects are more properly understood as representing cross- situational specificity in AC performance not method bias (Lance, 2008a, 2008b; Lance et al.,
2000). As such, AC construct validity research represents another area where the default assumption that the third facet in a measurement design must be a method facet was invoked, and had the effect of sending researchers on a 25-year long detour to fix an organizational intervention that was not broken in the first place. AC exercises never should have been and should not now be considered mere measurement methods.
Other measurement facets that once were thought of as mere methods but are now better under- stood as having substantively relevant effects on theoretically important constructs include measure- ment occasions, where occasion factors are now better understood as representing state-related aspects of the traits being measured (e.g., Kenny & Zautra, 2001; Schermelleh-Engel, Keith, Moosbrugger, &  Hodapp, 2004), and  positive–negative  item  wording effects  that  have  been shown to  be  related  predictably  to  personality traits  such as  neuroticism   emotional  stability (e.g., DiStefano & Motl, 2006; Quilty, Oakman, & Risko, 2006).
Lance et al. (2009) provided a prototypical multidimensional measurement system that was pat- terned after Cattell’s (1966) ‘‘basic data relation matrix’’ or ‘‘data box.’’ Lance et al. proposed that most, if not all, MTMM-related designs seen in the organizational research literature could be located as a three-dimensional subspace within the measurement facets of:

(a) persons (or groups of persons, or collectivities of groups of persons who may be the object of study); (b) focal constructs that constitute the relevant characteristics of the entities studied; (c) occasions, or temporal replications of measurement; (d) different situations in which measurement may occur; (e) observers or recorders of entities’ behavior; and (f) response modalities/formats (p. 354).

For example, the multisource ratings data discussed earlier combines the persons (i.e., ratees), focal constructs (i.e., rating dimensions), and observers (i.e., raters) facets, and the AC data discussed ear- lier combines the persons (i.e., candidates), focal constructs (i.e., dimensions), and situations (i.e., exercises) facets. Lance et al. (2009) encouraged researchers to locate their research design within this  larger  multidimensional  data  array  to  help  determine  whether  some  measurement  facet




represents a mere method or whether it represents something more substantively meaningful, and to avoid the default assumption that ‘‘if it ain’t trait it must be method’’ (p. 339). Lance et al. suggested that:

If a particular measurement facet truly represents alternative approaches to assigning numbers to obser- vations to represent individuals’ standing on latent constructs independent of substantive content related to other latent constructs, the facet might be reasonably viewed as representing alternative measurement methods (p. 353).

We followed this advice in the selection of data sets for reanalysis in the current study.

Summary
In summary, the current study’s objectives were to (a) determine the veracity of the urban legend that monomethod correlations are inflated by common method variance as compared to the correla- tions among the traits themselves and (b) estimate trait and method variance and covariance com- ponents for MTMM data in which the alleged methods truly represent mere variations in measurement approaches.


Method
Selection of Studies

We identified relevant articles using the PsychInfo database by conducting a citation search on the
D. T. Campbell and Fiske (1959) article, using the subject keywords ‘‘multitrait   multimethod’’ and
‘‘MTMM’’ and by locating the primary studies cited by Cote and Buckley (1987), Doty and Glick (1998), Williams et al. (1989), and Buckley et al. (1990). A total of 1,711 nonredundant articles were identified. We limited our review to sources that were in English and that were available online. This resulted in the elimination of 17 and 94 sources, respectively (most of the latter were older journal articles or book chapters). Another 1,226 articles cited the article of D. T. Campbell and Fiske (1959) but for reasons other than the conduct of an MTMM study. For example, many of these citations were to  general  references  to  measures’ convergent, discriminant,  or  construct validity  (e.g., D’Mello & Graeser, 2009; Franic & Bothe, 2008). Another 80 studies apparently did conduct MTMM analyses, up to the point of presenting descriptive information (e.g., mean HTMM, MTHM, and HTHM correlations) but did not present the actual MTMM matrix (e.g., Choi, 2004; Lievens, Chasteen, Day, & Christiansen, 2006). Another 138 articles were not included because they were theoretical, primarily methodologically oriented, and/or nonempirical. Examples of these include the demonstration of MTMM approach for longitudinal research by Cole (2006), and the critique of the correlated uniqueness (CU) model by Lance et al. (2002) for MTMM data. An additional
80 studies were eliminated because the alleged ‘‘methods’’ actually represented substantive mea- surement facets: (a) 55 studies were excluded because they used raters as methods (e.g., multisource performance ratings, parent, teacher, peer, and self ratings of school performance, etc.), (b) 14 stud- ies used AC exercises as methods, and (c) 11 studies used multiple measurement occasions as meth- ods. Another 16 studies were eliminated because they were underidentified in a CTCM CFA parameterization of MTMM data (see Lance et al., 2002).1 Finally, 42 studies provided otherwise usable MTMM matrices but were not retained because they resulted in nonconvergent and/or inad- missible CFA solutions (see below). Unfortunately, this stringent elimination process resulted in the inclusion of only the 18 studies described below. Even so, these studies represent a diverse set of constructs ranging from various aspects of personality, organizational reactions and perceptions, attitudes, work performance, and vocational interests and thus support generalizable findings.




Analyses

Each candidate MTMM matrix was input to LISREL 8.8 (Jo¨ reskog & So¨ rbom, 1993) for a CTCM CFA parameterization. We chose the CTCM model for analysis because it is theoretically the most faithful to the design of the MTMM matrix (Lance et al., 2002). We did not attempt CU parameter- izations of method effects because the CU model requires the assumption that methods are uncor- related, an assumption that we documented earlier is untenable. Furthermore, the CU model is known to produce upwardly biased estimates of trait factor loadings and correlations, despite its advantage over the CTCM model in returning admissible solutions (Conway, Lievens, Scullen, & Lance, 2004; Lance et al., 2002). We also did not test trait- or method-only models as we wished to estimate both trait and method effects on measures simultaneously. We also did not test uncorre- lated methods model because (a) previous studies have documented that methods are routinely cor- related, (b) an uncorrelated methods model also produces upwardly biased estimates of trait factor loadings and intercorrelations as does the CU model, and (c) an uncorrelated methods model is a special case of the correlated methods model that is routinely estimable (method correlations can be estimated at any value, including 0) under the CTCM model. We allowed a maximum of
1,000 iterations and determined that a solution was admissible if all uniquenesses were non- negative and factor loadings and correlations were <1.00 in absolute value. In the event that a solu- tion was found to be inadmissible, we attempted a mathematically equivalent parameterization of the CTCM model presented by Rindskopf (1983):

2 FTT0L
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5                    ð7Þ


where, assuming that traits and methods are crossed (though they need not be), LT  and LM  are the
T*M   T and T*M    M matrices of trait and method factor loadings, respectively, LU 1=2  is the T*M
  T*M diagonal matrix containing square roots of the uniquenesses, FTT’  (T   T) and FMM’  (M  
M) contain correlations among traits and methods, respectively, and I is a T*M     T*M identity
matrix. Because uniquenesses are calculated as the squares of the elements in LU 1=2 , even negative values are considered proper.



Results

Table 1 shows the number of traits and methods in, and the overall goodness-of-fit indices for each of the MTMM matrices that returned convergent and admissible solutions. Overall, model fit was good to excellent for the CTCM model except for the Kothandapani (1971) and Yang, Lance, and Hui (2006) studies, the latter of which reported results of a relatively sparsely parameterized model.
Table 2 provides a brief description of each study’s traits and methods and each study’s mean correlations and trait and method factor loadings and correlations. The traits measured included var- ious personality dimensions, attitudinal dimensions, and work-related variables. Methods were dif- ferent response formats for the same items (e.g., Stapel, Likert, Semantic Differential formats, Arora, 1982) or different scales/subscales designed to measure the same traits (e.g., the job diagnos- tic survey and the job rating form to measure Hackman & Oldham’s [1976] core job characteristics, Birnbaum, Farh, & Wong, 1986). HTMM correlations were highest for job-related variables (M ¼
.42), followed by attitudes (M ¼ .35) and personality dimensions (M ¼ .20; F(2,14) ¼ 2.84, p < .10), MTHM correlations were higher for scale format methods (M ¼ .61) than for different tests as meth- ods (M ¼ .47; F(1,16) ¼ 3.43, p < .10) and trait factor loadings were higher for scale format methods (M ¼ .72) than for different tests as methods (M ¼ .58; F(1,16) ¼ 6.98, p < .05).




Table 1. Number of Traits and Methods and Overall Goodness-of-fit Indices for MTMM MatricesStudy
Traits
Methods
df



	w2           SRMSR
	RMSEA
	TLI
	CFI

	Allen and Hamsher (1974)
	3
	3
	12
	7.23
	.025
	<.001
	1.01
	1.00

	Arora (1982)
	3
	3
	12
	30.83
	.066
	.091
	.95
	.98

	Birnbaum, Farh, and Wong (1986)
	5
	2
	14
	15.91
	.039
	.031
	.98
	.99

	Flamer (1983) Study 1
	3
	3
	12
	8.91
	.022
	<.001
	1.01
	1.00

	Flamer (1983) Study 2
	3
	3
	12
	20.96
	.052
	.059
	.96
	.99

	Hewitt, Foxcroft, and MacDonald (2004)
	3
	6
	99
	191.10
	.018
	.019
	.99
	.99

	Johnson, Smith, and Tucker (1982)
	5
	2
	14
	24.75
	.057
	.086
	.95
	.98

	Keaveny and McGann (1975)
	13
	2
	194
	351.42
	.040
	.059
	.98
	.99

	Kothandapani (1971)
	3
	4
	33
	240.13
	.066
	.120
	.89
	.95

	Lance, Noble, and Scullen (2002)
	3
	3
	12
	6.66
	.021
	<.001
	1.06
	1.00

	Mosher (1966)
	3
	3
	12
	6.04
	.016
	<.001
	1.02
	1.00

	Palmer and Loveland (2004)
	5
	2
	14
	23.27
	.042
	.066
	.94
	.98

	Pitoniak, Sireci, and Luecht (2002)
	4
	3
	24
	1576.76
	.012
	.041
	.99
	1.00

	Rose and Andiappan (1978)
	4
	4
	76
	95.46
	.074
	.058
	.93
	.98

	Seligson, Huebner, and Valois (2003) Study 1
	5
	2
	14
	12.81
	.021
	<.001
	1.01
	1.00

	Seligson et al. (2003) Study 2
	5
	2
	14
	15.76
	.049
	.036
	.96
	1.00

	Thompson and Berven (2002)
	4
	2
	5
	5.38
	.016
	.014
	.99
	1.00

	Yang, Lance, and Hui (2006)
	6
	5
	350
	1899.56
	.130
	.076
	.92
	.94


Note: Traits ¼ number of traits; Methods ¼ number of methods; df ¼ models degrees of freedom; SRMSR ¼ standardized root  mean squared residual; RMSEA ¼ root  mean squared error  of approximation; TLI ¼ Tucker-Lewis Index;  CFI ¼ Comparative Fit Index.

Our study’s first objective was to test the idea that monomethod correlations are inflated over actual correlations among traits. The penultimate row in Table 2 shows that the mean HTMM correlation (.340) was actually slightly lower than the average estimated trait intercorrelation (.371). A return to Equation 3 explains why this result incurs: HTMM correlations are inflated by common method
2

variance by a factor of lMij lMi0 j   ¼ :427

¼ :182 on the average, but the estimated trait intercorrela-
2

tion ¼ .371 is also attenuated due to measurement error by a factor of lTij lTi0 j ¼ .635

¼ .403 on the

average so that the attenuated true score correlation is reduced by .222 to .149. The HTMM that is

reproduced on the basis of CFA model parameter estimates, r^Ti Mj ;Ti0 Mj  ¼ l^Tij l^Ti0 j f^ Ti Ti0


þl^Mij l^Mi0 j ¼

.6352*.371 þ .4272 ¼ .332 is nearly identical to the mean HTMM estimated directly from the data
(further attesting to the goodness-of-fit of the CTCM model), and shows (as in the Lance & Sloan,
1993 article) that common method effects largely offset the attenuating effects of unreliability in monomethod correlations. Thus, there is a kernel of truth to the urban legend that common method effects inflate monomethod correlations, but it is a myth that monomethod correlations are larger than their true score counterparts and this is because of the attenuating effects of measurement error.
Results in Table 2 also serve to illustrate a point that we made earlier––differences between mono- method and heteromethod correlations should not be used to estimate common method effects. As we
2

just showed, the common method effect is estimated from results here as lMij lMi0 j ¼ .427

¼ .182 on

the average, whereas the difference between the mean HTMM and HTHM correlations is .340  
.248 ¼ .092, 48% lower than that estimated from CFA results. This is because 39% of the .248 mean
HTHM correlation is itself due to correlated method variance, or lMij lMi0 j0 fMj Mj0    ¼ .427 *.520 ¼2

.095 from Table 2. Thus, to the extent that methods are correlated, as it appears from previous reviews and Table 2 that they routinely are, differences between HTMM and HTHM correlations will return inaccurate underestimates of common method variance. Note that two reviews that con- cluded that covariance distortion of common method effects is minimal (Crampton & Wagner, 1994; Spector, 1987) used this approach.
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	Table 2. Study Descriptions
	and CFA Results
	

	Study
	Traits
	Methods
	MTHM
	HTMM
	HTHM
	TL
	ML
	TR
	MR

	Allen and Hamser (1974)
	3 dimensions of emotionality
	Marlowe-Crowne
	.608
	.522
	.367
	.588
	.622
	.387
	.753

	
	
	Rotter Scale
	
	
	
	
	
	
	

	
	
	Mosher Scale
	
	
	
	
	
	
	

	Arora (1982)
	Situational, enduring and response
	Stapel, Likert, Semantic
	.669
	.339
	.226
	.769
	.458
	.183
	.433

	
	involvement
	Differential
	
	
	
	
	
	
	

	Birnbaum, Farh, and Wong
(1986)
	Core job dimensions based on
Hackman and Oldham
	Job diagnostic survey
Job Rating Form
	.330
	.390
	.180
	.590
	.350
	.500
	 .200

	Flamer (1983) Study 1
	Attitudes towards discipline, the law
and mathematics
	Likert
Thurstone
	.540
	.057
	.044
	.587
	.366
	 .103
	.877

	
	
	Semantic differential
	
	
	
	
	
	
	

	Flamer (1983) Study 2
	Attitudes towards discipline, the law
	Likert
	.534
	.093
	.075
	.683
	.302
	.063
	.700

	
	and mathematics
	Thurstone
	
	
	
	
	
	
	

	
	
	Semantic differential
	
	
	
	
	
	
	

	Hewitt, Foxcroft, and
	Internality, stability,  & globality
	6 items from the attributional
	.190
	.290
	.100
	.340
	.500
	.280
	.270

	MacDonald (2004)
	
	style questionnaire
	
	
	
	
	
	
	

	Johnson Smith and Tucker
	5 Job description dimensions
	2 Job Descriptive Index scale
	.660
	.393
	.3105
	.758
	.468
	.332
	.630

	(1982)
	
	formats
	
	
	
	
	
	
	

	Keaveny and McGann (1975)
	13 categories of teaching
	Graphic rating scale
	.635
	.485
	.431
	.799
	.238
	.659
	.060

	
	performance
	Behavioral expectation scale
	
	
	
	
	
	
	

	Kothandapani (1971)
	Feeling, Belief, and Intention
	Thurstone
	.481
	.449
	.179
	.643
	.603
	.297
	.195

	
	
	Likert
	
	
	
	
	
	
	

	
	
	Guttman
	
	
	
	
	
	
	

	
	
	Guilford
	
	
	
	
	
	
	

	Lance, Noble, and Scullen
	Attitudes towards diversity
	Structured Interview
	.160
	.320
	.150
	.410
	.370
	.790
	.230

	(2002)
	
	In-Basket
	
	
	
	
	
	
	

	
	
	Biodata Form
	
	
	
	
	
	
	

	Mosher (1966)
	Sex guilt, Hostile guilt; Mortality/
	Forced Choice
	.770
	.520
	.490
	.780
	.360
	.660
	.860

	
	Conscience guilt
	True False
	
	
	
	
	
	
	

	
	
	Incomplete Sentence
	
	
	
	
	
	
	



(continued)
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	Table 2 (continued)
	

	Study
	Traits
	Methods
	MTHM
	HTMM
	HTHM
	TL
	ML
	TR
	MR

	Palmer and Loveland (2004)
	Big five personality traits
	2 Big Five Scales:
	.710
	.171
	.135
	.697
	.331
	.212
	.860

	
	
	Goldberg, Mini-Marker
	
	
	
	
	
	
	

	Pitoniak, Sireci, and Luecht
	4 factors of the the uniform CPA
	3 different item formats
	.610
	.540
	.670
	.600
	.520
	.710
	.930

	(2002)
	Examination
	
	
	
	
	
	
	
	

	Rose and Andiappan (1978)
	4 Work Performance Dimensions
	4 Sex-role context
	.511
	.419
	.281
	.669
	.479
	.490
	.447

	Seligson, Huebner, and Valois
	5 Satisfaction targets
	2 Life Satisfaction  Scales: MSLSS,
	.636
	.433
	.389
	.676
	.509
	.377
	.740

	(2003) Matrix 1
	
	BMSLSS
	
	
	
	
	
	
	

	Seligson et al. (2003) Matrix 2
	5 Satisfaction targets
	2 Life Satisfaction  Scales: MSLSS,
	.534
	.368
	.240
	.695
	.451
	.349
	.320

	
	
	BMSLSS
	
	
	
	
	
	
	

	Thompson and Berven (2002)
	Horizontal individualism (HI)
	2 individual/collectivism scales:
	.448
	.097
	.058
	.511
	.319
	.187
	.720

	
	Vertical individualism (VI)
	FFIC, ICVAQ
	
	
	
	
	
	
	

	
	Horizontal collectivists (HC)
	
	
	
	
	
	
	
	

	
	Vertical collectivists (VC)
	
	
	
	
	
	
	
	

	Yang, Lance, and Hui (2006)
	6 Factors of the SDS representing
	Five Self-directed search (SDS)
	.480
	.240
	.140
	.630
	.440
	.310
	.540

	
	vocational interests
	subtests
	
	
	
	
	
	
	

	Mean
	
	
	.528
	.340
	.248
	.635
	.427
	.371
	.520

	SD
	
	
	.165
	.154
	.168
	.122
	.104
	.233
	.321


Note. MTHM ¼ mean monotrait-heteromethod correlation; HTMM ¼ mean heterotrait-monomethod correlation; HTHM ¼ mean heterotrait-heteromethod correlation; TL ¼ mean CFA-estimated trait factor loading; ML ¼ mean CFA-estimated method factor loading; TR ¼ mean CFA-estimated trait factor correlation; MR ¼ mean CFA-estimated method factor correlation.






Table 3. Comparative Estimates of Trait and Method Variance and Correlations

	
Study
	% Trait variance
	% Method variance
	Trait correlation
	Method correlation

	Cote and Buckley (1987)
	.42
	.26
	.67
	.48

	Doty and Glick (1998)
	.46
	.32
	.26
	.34

	Williams, Cote, and Buckley (1989)
	.51
	.27
	NR
	.63

	Buckley, Cote, and Comstock (1990)
	.42
	.22
	.51
	.37

	Present study
	.40
	.18
	.37
	.52

	Raters as Methods:
	
	
	
	

	Mount, Judge, Scullen, Sytsma, and Hezlett
(1998)
	.09
	.72
	 .02
	.15

	Scullen, Mount, and Goff (2000)
	.23
	.65
	NR
	NR

	Hoffman, Lance, Bynum, and Gentry
	.10
	.77
	.13
	.45

	(in press)
	
	
	
	

	AC exercises as methods:
	
	
	
	

	Lievens and Conway (2001)
	.34
	.34
	.71
	NR

	Lance, Lambert, Gewin, Lievens, and
	.14
	.52
	NR
	.42

	Conway (2004)
	
	
	
	

	Bowler and Woehr  (2006)
	.22
	.34
	.79
	.10
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Finally,   the    MTHM   correlation    reproduced   from   CFA   results
þl^Mij l^Mij0 f^ Mj M

r^Ti Mj ;Ti Mj0   ¼ l^Tij l^Tij0

j0   ¼ .6352
2


þ .427 *.520 ¼ .498 was only slightly lower than that estimated directly

from the data (.528). These results illustrate the point made earlier that nearly 20% of the mean so- called convergent validity correlation (Woehr & Arthur, 2003) comes not from convergent validity (lTij lTij0 ) but from correlated method effects (lMij lMij0 fMj Mj0 ).
The second goal of this article was to provide more accurate estimates of the pervasiveness of
method effects in organizational research. Results from Table 2 are summarized in the top panel of Table 3 along with previous studies’ estimates of trait and method variance components and cor- relations. Our estimate of the proportion of variance attributable to method variance (18%) was somewhat lower than previous studies’ estimates. Post hoc, we speculated that the reason that our estimate of the mean proportion of method variance was lower than previous reviews was that we excluded a number of studies that represented substantively meaningful measurement facets (i.e., raters, AC exercises, and occasions as methods). Cote and Buckley (1987) did not list the stud- ies included in their review, but the other three reviews listed in the top portion of Table 3 did. The studies reviewed by Doty and Glick (1998) used a variety of different measurement methods. We compared the proportions of method variance reported by Doty and Glick for those studies that used raters and AC exercises to those studies that used different tests and response formats and found that the former yielded significantly larger proportions of method variance, on the average (M ¼ 43%) as compared to the latter (23%, F(1,26) ¼ 14.23, p < .001), supporting our idea. The studies reviewed by Williams et al. (1989) all used different tests or response formats as methods. The studies reviewed by Buckley et al. (1990) used a variety of methods and the mean estimated method var- iance for raters as methods was higher (24%) than for different tests or response formats (21%), but this difference was nonsignificant. Thus, there is some support for the idea that by excluding sub- stantive measurement facets, we obtained a lower and perhaps more accurate estimate of the preva- lence of method variance in organizational measures.
We present summary results from six other studies in the lower panel of Table 3 that were
conducted after the major reviews of method variance in organizational research cited in the upper portion of the Table to provide some additional context on this interpretation. Here we cite three




large-scale primary studies’ summary results that used somewhat different CFA parameterizations to estimate rater, source, and dimension variance components in multisource performance ratings (Hoffman et al., in press; Mount et al., 1998; Scullen et al., 2000). Results show that if raters were (inappropriately) considered methods, then strong and pervasive method effects would be implicated for multisource ratings. In addition, Bowler and Woehr (2006), Lance et al. (2004), and Lievens and Conway (2001) reported three large-scale reanalyses of AC data, again using somewhat different analytic approaches. Here again, if AC exercises were (inappropriately) considered methods, strong method effects would be implicated. Thus, we interpret these patterns of results as indicating that if substantively meaningful measurement facets are inappropriately classified as method factors, that (common) method variance will appear to be a far more pervasive phenomenon than it really is.


Discussion

Our two main findings from an updated review of MTMM studies can be summarized as follows: (a) there is a kernel of truth to the urban legend that common method effects inflate monomethod cor- relations but it is a myth that monomethod correlations are larger than correlations among the con- structs themselves, and this is because of the offsetting and attenuating effects of measurement error. Thus, monomethod correlations are generally not inflated as compared to their true score counter- parts, and (b) method variance occurs frequently, but when substantive measurement facets are excluded as alleged methods, common method variance does not appear to be as robust and threa- tening as many seem to think.
Due to the counterbalancing effects of common method effects and measurement unreliability, monomethod correlations were almost exactly equal to (and were actually slightly lower) than their estimated true score counterparts, on the average. This suggests that fear that ‘‘everything correlates to some extent with everything else’’ (Meehl, 1990a, p. 204) because of common method bias (the
‘‘crud factor,’’ Meehl, 1990a, 1990b) may not be so justified after all, despite being repeatedly
refueled  and  fanned by  instructors, researchers, reviewers, and  editors (e.g., J.  P.  Campbell,
1982). This also suggests that monomethod research may represent more accurate portrayal of rela- tions among constructs themselves than has been thought, and may even be more accurate than het- eromethod research because the latter are more likely to be attenuated as compared to their true score counterparts (see also Frese & Zapf, 1988).
These findings also have implications for statistical corrections for attenuation and common method effects. Returning to Equation 4, attempts to control statistically for common method effects by  removing  the  lMij lMi0 j     component  from  the  HTMM  correlations  rTi Mj ;Ti0 Mj  ¼ lTij lTi0 j fTi Ti0
þlMij lMi0 j , for example, using the partial correlation procedure by Lindell and Whitneys (2001)
could result in an underestimate of the correlation among the traits themselves (i.e., fTi Ti0   is attenu- ated by a factor equal to lTij lTi0 j ). Thus, if statistical controls are effected for common method effects, the resulting partial correlation should be corrected for attenuation with accurate estimates
of the respective variables’ reliabilities. Of course, correcting for attenuation due to unreliability without simultaneous correction for common method effects poses the reverse problem––the result- ing corrected correlation could likely be an overestimate of the true score counterpart. In addition, unfortunately, these complications are not limited to monomethod correlations, because as we showed earlier, HTHM correlations potentially reflect both the influences of correlated traits and correlated methods (HTHM ¼ lTij lTi0 j0 fTi Ti0   þ lMij lMi0 j0 fMj Mj0 ).
So what is one to do? We see five options. First, one can continue to ignore possible threats of
unreliability and common method effects. We suspect that this will continue to be a frequently adopted choice and, paradoxically, this actually may not be such a bad idea after all if the inflation- ary effects of common method effects do offset attenuating effects of measurement error in a




particular study. Second, one can adopt multiple indicator models and model either measured or unmeasured method factors as is discussed by Williams and Anderson (1994) and Podsakoff et al. (2003). Little is known about this approach, though research so far shows that modeling mea- sured method factors have surprisingly little effect on structural model parameter estimates (Wil- liams & Anderson, 1994). Third, one might adopt the partial correlation approach by Lindell and Whitney (2001) to adjust observed correlations for the effects of common methods variance. How- ever, little is known about the effectiveness of this approach either.
Developments presented in this article suggest a fourth approach, a simultaneous correction for
attenuation and method effects for monomethod correlations:

rXij Xi0 j        lMij lMi0 j

r^Xij Xi0 j   ¼


lTij


lTi0 j

ð8Þ



or for heteromethod correlations:



rXij Xi0 j0       lMij lMi0 j0  F Mj Mj0

r^Xij Xi0 j0   ¼


lTij


lTi0 j0

ð9Þ


where the rs represent the disattenuated and method variance-adjusted correlations, the rs are the corresponding observed correlations, lMs are the effects of measurement methods on observed mea- sures, FMj Mj0   is the correlation among different methods, and lTs are reliability indexes (square roots of reliability coefficients). A simultaneous multivariate correction could also be effected as:

C ¼ D   1=2 ðR     MÞD 1=2                                                                          ð10Þ

where C is the matrix of corrected correlations, D is a diagonal matrix containing the variables’ reli- abilities, R is the original correlation matrix, and M is a square symmetric matrix containing correc- tions for method effects. For example, if variables A and B are measured using the same method (method 1), but variable C is measured using method 2, M would be constructed:
2        0                                       SYM 3

M ¼ 4

lA1 lB1                           0
lA1 lC2 FM1 M2        lB1 lC2 FM1 M2               0

5:                                  ð11Þ


Of course, this raises the question of where one would obtain estimates of the quantities needed to effect the corrections. Reliability estimates for most measures are readily available or computable. lMs can be estimated from a primary CFA of MTMM data. These quantities have also been esti- mated previously in many primary studies and are reported for a variety of different methods in table
4 by Doty and Glick (1998), table 2 by Williams et al. (1989), table 1 by Buckley et al. (1990), and the current study’s Table 2. FMjMj’s can also be estimated from a primary CFA of MTMM data or estimates from previous studies can be located in table 1 by Buckley et al. (1990) and the current study’s Table 2. In both cases prior estimates of similar methods’ effects and correlations can be used to effect the corrections in Equations 8–11.
Finally, one might conduct a CFA on MTMM data to confirm a measurement model and then conduct structural equation modeling on the trait intercorrelations, leaving the method loadings and correlations in place to control for method effects (see Arora, 1982 for an example of this approach using a CU parameterization of orthogonal method effects). Of course, this is the most direct approach to the control of method effects in a particular study but also has the obvious drawback of requiring multiple (different method) indicators for each modeled construct. This points to the first need for future research that we suggest: the latter four approaches to the modeling and control




of method effects need to be studied individually and in comparison to one another to determine their relative effectiveness.
One point that we have emphasized in this article is that the third measurement facet in a data matrix (in addition to the objects of measurement and one’s focal constructs) is not necessarily a measurement method (Lance et al., 2009). This is one key difference between our review and most previous reviews and one that we believe is at least partially responsible for the difference in esti- mated magnitudes of method effects across these reviews. These differences are especially evident when viewed in light of results from large-scale studies that have applied MTMM analyses to per- formance ratings and have routinely estimated substantial proportions of variance due to raters (Hoffman et al., in press; Scullen et al., 2000). Indeed, we excluded 80 studies because the alleged
‘‘methods’’ actually represented substantive measurement facets (e.g., raters, AC exercises, and measurement occasions). In the end, we included 18 studies that used different tests or different response formats as methods. How do we know that these represent alternative measurement meth- ods and not something substantively more meaningful? Actually, we do not, but at present have no reason to suspect that they do. Thus, this is our second call for future research on the fundamental nature of method effects. Some research (cited earlier) has suggested strongly that certain measure- ment facets that were once thought of as mere measurement methods are now better understood as representing substantive influences of focal constructs in their respective nomological networks. The prototype multidimensional measurement classification system by Lance et al. (2009) may prove useful in these efforts. On the other side of the coin, there are various response style phenomena (Greenleaf, 1992a) such as acquiescence (e.g., Bentler, Jackson, & Messick, 1971), differential use of positively versus negatively worded items (Weems, Onwuegbuzie, Schreiber & Eggers, 2003), central tendency (e.g., Weems & Onwuegbuzie, 2001), and extreme response style (e.g., Greenleaf,
1992b) that also deserve additional research as source of method variance independent of the mea- surement method per se.2
One limitation to this study is the relatively small number of MTMM studies that we eventually retained for analysis, just over 1% of the studies that we initially identified. Understandably, many citations to the D. T. Campbell and Fiske (1959) article did not actually conduct a MTMM study. However, many that did failed to report the MTMM matrix. In the same spirit of cumulating knowl- edge as in meta-analysis (Hunter & Schmidt, 2004), we urge future researchers to report the entire MTMM matrix, along with descriptive statistics (Ms and SDs) in their published (and unpublished) research. In addition, we found that a number of otherwise eligible MTMM matrices did not con- verge in a proper solution under a CTCM model CFA parameterization. As we acknowledged ear- lier, the CTCM does experience empirical underidentification problems (Brannick & Spector, 1990; Kenny & Kashy, 1992) but only under the CTCM model are trait and method factor loadings and correlations estimable; no other CFA model for MTMM data currently on the market estimates these quantities. Thus, we were faced with the unfortunate situation of being able to obtain unbiased para- meter estimates in the complete MTMM model for only a subset of the available MTMM matrices.



Conclusion
For nearly 50 years, organizational and behavioral researchers have bemoaned the influence of com- mon method effects as posing a serious threat to substantive conclusions. We reevaluated the effects of common method variance by reestimating method effects using what we have argued is a more appropriate sample of studies and by considering the counteracting effects of unreliability and com- mon method variance. In contrast to conventional wisdom, common method effects do not appear to be so large as to pose a serious threat to organizational research, especially when the counteracting effects of measurement error are considered.




Notes
1. For a CTCM CFA model to be identified, the MTMM matrix being analyzed must have at least three traits crossed with three methods, two traits crossed with four methods, or four traits crossed with two methods. The 16 studies that were eliminated on this basis were dimensioned smaller than the minimum required.
2. We thank an anonymous reviewer for alerting us to this point.
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